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Percolation on a multifractal
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We investigate percolation phenomena in multifractal objects that are built in a simple way. In these objects
the multifractality comes directly from the geometric tiling. We identify some differences between percolation
in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The
first is related to the coordination number, which changes along the multifractal. The second comes from the
way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite
size lattices and draw the histogram of percolating lattices against site occupation probability. Depending on a
parameter characterizing the multifractal and the lattice size, the histogram can have two peaks. We observe
that the percolation threshold for the multifractal is lower than that for the square lattice. We compute the
fractal dimension of the percolating cluster and the critical exponentb. Despite the topological differences, we
find that the percolation in a multifractal support is in the same universality class as standard percolation.
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I. INTRODUCTION

Percolation theory has been used in several fields suc
chemistry, epidemics, science of materials, transport of flu
in porous media, branched polymers, and econo-phy
@1–8#. The original percolation model based on a square
tice has been extended to several kinds of regular and
dom lattice, to continuous media where the objects ove
in space, and to other complex systems@9–12#. In this work
we generalize percolation theory to cover an even broa
range of complex systems. We devise an approach to in
tigate how percolation occurs in a support that is itsel
multifractal. For this purpose we have constructed an ea
assembled multifractal immersed in a two-dimensional~2D!
space.

Our work is inspired by the modeling of geophysic
natural objects that show multifractal properties@13–16#.
The model can be applied to transport of fluid in multifrac
porous media such as sedimentary strata. Oil reservoirs
possible candidates to be modeled in such a way since
measurement of some physical quantities in well logs sh
multifractal behavior@17,18#. Despite the potential applica
tions, this problem is important by itself in the scientifi
context. The study of percolation phenomena in multifrac
lattices is relevant in statistical physics, especially when
size of the blocks and their number of neighbors can var

In order to make this analysis we create a multifrac
object that can be used as a toy model and a laboratory
percolation theory. An important characteristic of this obje
is that its topological properties~e.g., number of neighbors o
each block! change over the object. In Ref.@19# an algorithm
that has some resemblance to ours is used. That multifra
is built from the partition of a square, but the object has
trivial topology. In addition, the object used in@19# is sto-
chastic and ours is deterministic. Although both mod
present multifractality, our model has the following diffe
ences: it shows a nontrivial topology, we can determine
spectrum of fractal dimensions analytically, it generalizes
square lattice, and it shows simplicity in construction.
1539-3755/2004/69~6!/066135~6!/$22.50 69 0661
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The multifractal object we have developed is a natu
generalization of the regular square lattice once we cons
the algorithmic point of view. The algorithm that generate
square lattice with 2n32n cells starting with a square o
fixed size is the following. We begin with anL3L square
and cut it into four identical pieces~cells!. At each step all
the cells are equally divided into four parts using vertical a
horizontal segments. This process produces a lattice as a
tition of the square. The multifractal we create is also a p
tition of the square, but the ratio in which we divide the ce
is different from 1/2. The parameter characterizing the m
tifractal, r, is related to the ratio of this division.

What makes this problem appealing to physics is the
lowing. The support of the percolation clusters is compos
of subsets of different fractal dimensions. It is important
know how these different subsets are connected and
they participate in the conducting process. There are intri
ing features in the network due to the fact that all the ce
have rectangular shape but the area and the number of n
bors can vary, forming an exotic tiling.

In Sec. II we present the multifractal object that we co
struct to study percolation, and we analyze how its multifra
tal partition maps into the square lattice. In Sec. III we e
pose the algorithm we use to estimate the percola
threshold and derive the multifractal spectrum of the mu
fractal object. In Sec. IV we show the numerical results a
discuss the histograms of percolating lattices versus occ
tion probability. Finally, in Sec. V we summarize the ma
differences between percolation in a regular lattice and i
multifractal support.

II. THE MULTIFRACTAL OBJECT Qmf

The central object of our analysis is a multifractal obje
that we callQmf . Before defining it we enumerate some
its properties.

~1! Qmf is a multifractal, which means thatQmf has an
infinite number ofk subsets each one with a distinct fract
dimensionDk .
©2004 The American Physical Society35-1
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~2! It is possible to determine the spectrum of allDk ana-
lytically.

~3! The sum of all the families ofk subsets fills the square
This fact enables us to study its percolation properties us
procedures similar to the ones applied to site percolation
the square lattice.

~4! The algorithm of construction ofQmf has just one
parameterr.

~5! For the special choicer51 the objectQmf degener-
ates into the square lattice. In this case we compare ou
sults with square lattice site percolation.

~6! The objectQmf shows self-affinity or self-scaling de
pending on the region of the object.

~7! Finally, the algorithm for construction ofQmf is simple
and it is easily implementated on the computer.

We defineQmf through the following algorithm. We star
with a square of linear sizeL and choose a parameter 0,r
,1, wherer5s/r for r and s integers. In the first step,n
51, the square is cut into two pieces of arear /(s1r )
51/(11r) and s/(s1r )5r/(11r) by a vertical line~we
use units ofL2). In other words, the square is cut accordi
to a givenr. This step is shown in Fig. 1~a!, where we use
r5s/r 52/3.

In the second step,n52, we cut the two rectangles of Fig
1~a! by the samer, but using two horizontal lines as show
in Fig. 1~b!. This partition of the square generates four re
angular blocks: the smallest one is of area@r/(11r)#2, two
of them of arear/(11r)2, and the largest one is of are
@1/(11r)#2. In the figurer.0.5.

The third step,n53, is shown in Fig. 1~c! and the fourth

FIG. 1. The four initial steps in the formation ofQmf . ~a! The
vertical line cutting the square into two pieces of area ratior. Two
horizontal lines sharing the rectangles in the same ratio are dep
in ~b!. The third step is indicated in~c! and the fourth in~d!. At each
step the areas of the corresponding blocks are shown in figure
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step,n54, in Fig. 1~d!. As observed in the figure, at leve
n54 there are 24 blocks and the distribution of areas amon
the blocks follows the binomial law

15S r

11r D 4

14S r

11r D 3S 1

11r D16S r

11r D 2S r

11r D 2

14S r

11r D S 1

11r D 3

1S 1

11r D 4

. ~1!

We call the elements with the same area ak set. In the case
n54 we have fivek sets.

At step n the square has 2n21 line segments, (n11) k
sets, and 2n blocks. The partition of the areaA51 ~usingL2

units! of the square into different blocks follows the binomi
rule

A5 (
k50

n

Ck
nS r

11r D kS 1

11r D n2k

5S 11r

11r D n

51. ~2!

As n→` eachk set ~a subset made of cells of the sam
area! determines a monofractal whose dimension we cal
late in the next section. The ensemble of allk sets engenders
the multifractal objectQmf .

III. THE ALGORITHM OF PERCOLATION
AND THE MULTIFRACTAL SPECTRUM

In this section we show the algorithm used to study
percolation properties ofQmf and the analytical derivation o
its spectrum of fractal dimensions. The estimation of t
spectrumDk is performed using the box counting metho
@24#, whose measure elements come from the percola
algorithm.

The concept of the percolation algorithm forQmf consists
in mapping it into the square lattice. The square latt
should be large enough that each line segment ofQmf coin-
cides with a line of the lattice. Therefore we consider that
square lattice is more finely divided thanQmf . In this way all
blocks of the multifractal are composed of a finite number
cells of the square lattice.

To explain the percolation algorithm, we suppose that
Qmf construction is at stepn. We proceed with the percola
tion algorithm by choosing at random one among then

blocks of Qmf . Once a block is chosen all the cells in th
square lattice corresponding to this block are considered
occupied. Each time a block ofQmf is chosen, the algorithm
checks if the occupied cells of the underlying lattice are c
nected in such a way as to form aninfinite percolation clus-
ter. The algorithm to check the percolation is similar to t
one used in@20–23#.

For estimation of the spectrumDk of an objectX we use
the box counting method@24#. The objectX is immersed in
the plane of real numbersR2 and we use the trivial metric
Cover R2 by square boxes of side lengthe that just touch
each other. LetN(X) denote the number of square cells
side lengthe which intersectX. If

ed
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FIG. 2. ~Color! The figure shows two views of the multifractalQmf for n512, (s,r )5(3,2). On the left we have the original picture. Th
right-hand panel is an enlargement of the square indicated at left.
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DX5 lim
e→0

logN~X!

log~1/e!
5 lim

L→`

logN~X!

logL
~3!

is finite, thenDX is the dimension ofX.
In our case the objectX is ak set. Remember that thek set

corresponds to a set of rectangles of the same area. Fok
set we have thatNk is given by

Nk5Cn
kskr ~n2k!, ~4!

whereCn
k is the binomial coefficient that express the numb

of elements ofk type, andskr (n2k) is the area of each ele
ment of this set. If the square is partitionedn times (n/2
horizontal cuts andn/2 vertical cuts! its size is L5(s
1r )n/2. Combining all this information we have for the frac
tal dimension of eachk set

Dk5 lim
n→`

logCn
kskr ~n2k!

log~s1r !n/2 . ~5!

In the r 5s51 case all subsets ofQmf are composed o
elements of the same area, square cells. In this way the
ject is formed by a single subset with dimension

D5 lim
n→`

log~111!n

log~111!n/252. ~6!

This result is expected since in this particular caseQmf de-
generates into a square lattice that has dimension 2.

In Fig. 2 we show the picture ofQmf for r52/3. We have
usedn512. On the left, the full object is shown; on the righ
an enlargement of an internal square of the object is ill
trated. We have used the same color to indicate the elem
of the samek set. The unusual tiling depicted in the figure
common forQmf’s with different values ofr.
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Figure 3 shows the spectrum ofDk for n5400 calculated
from Eq. ~5!. The use of increasingn does not change the
shape of the curve, it only increases the number ofk and
makes the curve appear more dense. We use (s,r )5(2,3) to
illustrate the asymmetry of the distribution. The spectru
has a maximum close torn. In this case (2/3)400.270.
This means that the majority of the mass of the multifrac
is concentrated in thek sets around this value. The spectru
Dk is typically asymmetric around its maximum. Only th
case (s,r )5(1,1) is symmetric and the asymmetry ofDk
increases ass/(s1r )→1, which is related to the area distr
bution among the blocks, as we shall see in the next sec

IV. NUMERICAL SIMULATIONS

In this section we focus our attention on the numeri
results obtained from the algorithm exposed above. We

FIG. 3. The spectrum of fractal dimensionsDk of Qmf for n
5400 and (p,q)5(3,2).
5-3
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interested mainly in analyzing the percolating properties
Qmf . Figure 4~a! shows the histogram of percolating lattic
versus the occupation probabilityp. The area under the his
togram is normalized to unity. We usen510 and average the
results over 40 000 samples. We consider that a lattice
colates when it percolates from top to bottom or from left
right. The histogram of percolating lattices in both directio
is similar but slightly shifted to the right. This shift is com
mon in percolation~see Ref.@21# for percolation in a square
lattice!.

We show in Fig. 4~a! the results of simulations for th
following values of (s,r ):(1,1), which degenerates into th
square lattice; and~2,1!, ~4,1!, and~6,1! which correspond to
true multifractals. In this figure the histograms correspond
to ~2,1!, ~4,1!, and ~6,1! are shifted to the left compared t
the histogram of~1,1!. The peak of the histogram for~1,1!
corresponds, as expected, to the square lattice size per
tion thresholdpc50.597 @2#, since this case matches th

FIG. 4. In ~a! is depicted the histogram of percolation lattic
versus the occupation probabilityp for the cases (s,r )5(1,1),
~2,1!, ~4,1!, and~6,1!. The areas under the curve are normalized
unity. For the same (s,r ) a graphic of the fraction of percolatio
latticesRL versusp is shown in~b!. 40 000 lattices were used t
make the average.
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square lattice exactly. The other values ofpc are shown in
Table I.

The reason whyQmf , for diverser, shows roughly the
samepc comes from the topology of the multifractal. Th
topology of a set of blocks is related to the coordinati
numberc, which is defined as the number of neighbors
each block@2#. Qmf has the property thatc changes along
the object and withr. However, we compute the averag
coordination numbercav. These results do not depend si
nificantly on r, or on n, the number of steps used to bui
Qmf , which determines the number of blocks. The val
found,cav55.436, for the multifractal is close to the value
c for the triangular percolation problem, which hasc56 and
whose analytic percolation threshold ispc50.5. The situa-
tion (s,r )5(1,1), the square lattice, trivially showsc54.
Because the square lattice has a differentc it configures a
particular situation compared to otherQmf’s and it shows a
different pc as depicted in Fig. 4~a!.

In Table I we showpc and the fractal dimension of th
percolating cluster,df , for diverser. We have done an av
erage over 100 000 samples andn516. The estimation ofdf
is done by the relationM;Ldf for the ‘‘mass’’ M of the
percolation cluster, which means the area of the cluster m
sured in units of the underlying square lattice, andL, the size
of the underlying lattice. Based on the values ofdf of Table
I we conclude that percolation on a multifractal support~em-
bedded in two dimensions! belongs to the same class of un
versality as the usual percolation in two dimensions. T
calculated value ofdf for the ~6,1! case is smaller compare
to the others because of finite size effects. We discuss
effect in detail in the following paragraphs.

Percolation shows critical phenomena and several sca
relations are observed. The critical exponentb is defined
from the equation

RL;@pc~L !2pc#
b, ~7!

wherepc is the exact occupation probability value, in co
trast topc(L), which is the finite size value. The power la
~7! is satisfied forpc(L) obtained fromRL . The numerical
estimation ofb is based on Eq.~7!, whereRL is a key ele-
ment of the analysis. ForQmf the probabilityRL is not a well
behaved function ofp for low L as we shall see in the nex
paragraphs. Actually,RL can show, depending onr, an in-
flection point atpc in this regime. However, in the cas
whereL→` the scaling of@pc(L)2pc# recovers the usua
behavior. In this regime we find the sameb characteristic of
the two-dimensional case,b55/3650.138 88. We checked
in our simulations that, forn518, b is around 5% of the
exact value. The full set of values ofb is in Table I.

TABLE I. The values ofpc, df , andb for several multifractals
characterized by different pairs~s, r!.

(s,r ) ~1,1! ~2,1! ~3,1! ~3,2! ~4,1! ~5,1! ~6,1!

pc 0.593 0.527 0.526 0.526 0.525 0.525 0.53
df 1.895 1.900 1.911 1.890 1.902 1.929 1.84
b 0.127 0.128 0.140 0.141 0.141 0.118 0.10
5-4
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It is worth saying that, despite small fluctuations in t
values shown in the table, there is no trend in the numb
The conclusion we take from these data is that the errors
caused by finite size effects and low-number statistics.

The dispersion of the histogram changes significan
with (s,r ) as intuitively expected. To illustrate the change
the width of the histogram of a generic (s,r ) multifractal we
analyze the area of its blocks. At stepn of the construction of
Qmf the largest element has the areasn/(s1r )n and the
smallestr n/(s1r )n ~usingL2 units!. In this way the largest
area ratio among blocks increases with (s/r )n. As the occu-
pation probability, entering in the percolation algorithm, is
general proportional to the area of the blocks, we expect
the width of the histograms in Fig. 4~a! increases with
(s/r )n. This increase in the dispersion is visualized clearly
the curves~2,1! and ~4,1! of the figure.

The most singular curve in Fig. 4~a! is ~6,1!, which
clearly shows two peaks. We stress this point when we c
ment on Fig. 5. Figure 4~b! uses the same data of as Fi
4~a!, but instead of the histogram of percolating lattices
show the cumulative sumRL . As RL is normalized, this
parameter is also called the fraction of percolating lattic
As in Fig. 4~a! the case (s,r )5(1,1), the square lattice, re
produces the results in the literature@21#. In this situation the
lattice sizeL is L5(s1r )1051024. For this special case th
number of blocks is equal to the number of unit boxes c
ering the surface. The double peak case (s,r )5(6,1) shows
an inflection point in the graphic ofRL versusp. In the fol-
lowing figure we explore this point in detail.

The most noticeable signature of percolation in the m
tifractal Qmf is the double peak observed for (s,r )5(6,1) in
Fig. 5. In this figure the histogram of the percolating latti
versusp is plotted for diversen as indicated in the figure
The distance between the peaks decreases asn increases.
This picture indicates that the double peak is a phenome
that is relevant for percolation in the multifractal, whenr is

FIG. 5. The histogram of percolating lattices versus the occu
tion probabilityp for several values of the lattice size. The graph
shows the double peaks approaching each other asn increases. In
the figure (s,r )5(1,6) and 8,n,18. 40 000 lattices were used t
make the average.
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low, in the finite lattice size condition used in the simulatio
From an analytic point of view the curve~6,1! in Fig. 5 is
different from curve~1,1!. In curve~6,1! there are three ex
tremal points while in the~1,1! case the curve shows a sing
maximum point. We conjecture that in the limit ofn→`
these three points coalesce into a single one and all
curves show a similar behavior.

The two peaks in the histogram come from the huge d
ference among the area of the blocks ofQmf . For large
(s/r )n the area difference is so accentuated that we mo
the histogram of percolating lattices with bimodal statisti
In the case of the largest block chosen the multifractal ea
percolates compared with the opposite possibility. To e
mate the effect of the largest area block on the statistics
use Table II. The difference between the first peak atp1 and
the second one atp2 is Dpmax. In Table II we compare
Dpmax with the fraction of the largest block over the tot
square area@s/(s1r )#n. This comparison is made for differ
ent steps in the construction of the multifractaln; as n in-
creases the area difference decreases as does the dis
between peaks. Table II shows good agreement between
two values; we conclude that the bimodal statistic is cau
by the huge mass of the largest block.

We notice, however, that the agreement betweenDpmax
and @s/(s1r )#n decreases asn increases. We interpret th
disagreement between the bimodal statistics hypothesis
the numerics for highn as the limit of the hypothesis. Actu
ally, the largest block is not the only one that produces
isotropy in the multifractal, and asn increases this fact be
comes more accentuated. For smalln the large block can be
taken as the main factor in the anisotropy, and the bimo
statistics apply. Largen implies, however, true multifractals
and a more complex statistics should be used to treat
problem.

V. CONCLUSION

In this work we develop a multifractal objectQmf to study
percolation in a multifractal support. In addition to being
multifractal, Qmf shows several interesting properties. T
sum of all its fractal subsets fills a square, and it is poss
to determine the spectrum of its fractal dimensions. In ad
tion, the algorithm that generatesQmf has only one free pa
rameterr, and in ther51 caseQmf becomes the squar
lattice.

We observe that percolation in a multifractal presents d
ferent features from percolation in a regular lattice. There
two reasons for that: the heterogeneous distribution
weight ~area! among the blocks and the variation of the c
ordination number of the topological structure. The weight
each block in a multifractal counts differently in the mass

a-

TABLE II. Estimation of Dpmax and @s/(s1r )# n for several
stepsn.

n 8 10 12 14 16 18
Dpmax 0.29 0.22 0.15 0.11 0.070 0.040

S s

s1rD
n

0.291 0.211 0.157 0.115 0.084 0.062
5-5
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the infinite percolating cluster. The difference in weight
the blocks changes the dispersion of the histogram of pe
lating lattices. The phenomenon of two peaks appearing
the histogram is also connected with the weight differen
We model the distance between the peaks using bimodal
tistics. In the limit ofn→` all the histograms of multifrac-
tals seem to collapse onto a single curve.

For all cases in whichrÞ1 the multifractalQmf shows a
coordination number~number of neighbors of each block!
that changes along the object. The average coordina
number ofQmf is around 5.436. In contrast, the situatio
(s,r )5(1,1) ~the particular case of the square lattice! has a
coordination number constant and equal to 4. This sugg
that the caserÞ1 represents a break in the symmetry of t
system. In this sense the coordination number~topology! is
much more complex forQmf than for a regular lattice. De
.

nd

ev
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spite these differences, we have done numerical estimat
of the fractal dimension of the percolating cluster in the m
tifractal, obtaining values that are around 1.89, the same
mension found for the incipient percolation cluster in a tw
dimensional regular lattice. The numerical simulation of t
b critical exponent also shows the same value as in the t
dimensional regular case and points to the same conclu
that we have regular percolation.
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